Compare Page

Interpretability

Characteristic Name: Interpretability
Dimension: Usability and Interpretability
Description: Data should be interpretable
Granularity: Information object
Implementation Type: Process-based approach
Characteristic Type: Usage

Verification Metric:

The number of tasks failed or under performed due to the lack of interpretability of data
The number of complaints received due to the lack of interpretability of data

GuidelinesExamplesDefinitons

The implementation guidelines are guidelines to follow in regard to the characteristic. The scenarios are examples of the implementation

Guidelines: Scenario:
Standardise the interpretation process by clearly stating the criteria for interpreting results so that an interpretation on one dataset is reproducible (1) 10% drop in production efficiency is a severe decline which needs quick remedial actions
Facilitate the interaction process based on users' task at hand (1) A traffic light system to indicate the efficiency of a production line to the workers, a detail efficiency report to the production manage, a concise efficiency report for production line supervisors
Design the structure of information in such a way that further format conversions are not necessary for interpretations. (1) A rating scale of (poor good excellent ) is better than (1,2,3) for rate a service level
Ensure that information is consistent between units of analysis (organisations, geographical areas, populations in concern etc.) and over time, allowing comparisons to be made. (1) Number of doctors per person is used to compare the health facilities between regions.
(2) Same populations are used over the time to analyse the epidemic growths over the tim
Use appropriate visualisation tools to facilitate interpretation of data through comparisons and contrasts (1) Usage of tree maps , Usage of bar charts, Usage of line graphs

Validation Metric:

How mature is the process to maintain the interpretability of data

These are examples of how the characteristic might occur in a database.

Example: Source:
when an analyst has data with freshness metric equals to 0, does it mean to have fresh data at hand? What about freshness equals to 10 (suppose, we do not stick to the notion proposed in [23])? Is it even fresher? Similar issues may arise with the notion of age: e.g., with age A(e) = 0, we cannot undoubtedly speak about positive or negative data characteristic because of a semantic meaning of “age” that mostly corresponds to a neutral notion of “period of time” O. Chayka, T. Palpanas, and P. Bouquet, “Defining and Measuring Data-Driven Quality Dimension of Staleness”, Trento: University of Trento, Technical Report # DISI-12-016, 2012.
Consider a database containing orders from customers. A practice for handling complaints and returns is to create an “adjustment” order for backing out the original order and then writing a new order for the corrected information if applicable. This procedure assigns new order numbers to the adjustment and replacement orders. For the accounting department, this is a high-quality database. All of the numbers come out in the wash. For a business analyst trying to determine trends in growth of orders by region, this is a poor-quality database. If the business analyst assumes that each order number represents a distinct order, his analysis will be all wrong. Someone needs to explain the practice and the methods necessary to unravel the data to get to the real numbers (if that is even possible after the fact). J. E. Olson, “Data Quality: The Accuracy Dimension”, Morgan Kaufmann Publishers, 9 January 2003.

The Definitions are examples of the characteristic that appear in the sources provided.

Definition: Source:
Comparability of data refers to the extent to which data is consistent between organisations and over time allowing comparisons to be made. This includes using equivalent reporting periods. HIQA 2011. International Review of Data Quality Health Information and Quality Authority (HIQA), Ireland. http://www.hiqa.ie/press-release/2011-04-28-international-review-data-quality.
Data is not ambiguous if it allows only one interpretation – anti-example: Song.composer = ‘Johann Strauss’ (father or son?). KIMBALL, R. & CASERTA, J. 2004. The data warehouse ETL toolkit: practical techniques for extracting. Cleaning, Conforming, and Delivering, Digitized Format, originally published.
Comparability aims at measuring the impact of differences in applied statistical concepts and measurement tools/procedures when statistics are compared between geographical areas, non-geographical domains, or over time. LYON, M. 2008. Assessing Data Quality ,
Monetary and Financial Statistics.
Bank of England. http://www.bankofengland.co.uk/
statistics/Documents/ms/articles/art1mar08.pdf.
The most important quality characteristic of a format is its appropriateness. One format is more appropriate than another if it is better suited to users’ needs. The appropriateness of the format depends upon two factors: user and medium used. Both are of crucial importance. The abilities of human users and computers to understand data in different formats are vastly different. For example, the human eye is not very good at interpreting some positional formats, such as bar codes, although optical scanning devices are. On the other hand, humans can assimilate much data from a graph, a format that is relatively hard for a computer to interpret. Appropriateness is related to the second quality dimension, interpretability. REDMAN, T. C. 1997. Data quality for the information age, Artech House, Inc.

 

Completeness of optional attributes

Characteristic Name: Completeness of optional attributes
Dimension: Completeness
Description: Optional attributes should not contain invalid null values
Granularity: Element
Implementation Type: Rule-based approach
Characteristic Type: Declarative

Verification Metric:

The number of invalid null values reported in an optional attribute per thousand records

GuidelinesExamplesDefinitons

The implementation guidelines are guidelines to follow in regard to the characteristic. The scenarios are examples of the implementation

Guidelines: Scenario:
Provide default values for each valid case of null values for the attribute in concern so that null values occur only for actually missing values which are invalid cases for the attribute in concern. Case1: Attribute values that are not defined for a particular entity instance (e.g.: Maiden name of unmarried women ) Such instances will get the default value “NOT DEFINED”

Case2 : Attribute values that are defined for the entity instance whereas the real value for the attribute instance is null (eg: Vehicle number of a student who does not have a vehicle) Such instances will get the default value “NOT EXIST”

Case3: Attribute values are defined for the entity instance and the attribute instance should have a value (Student’s date of birth).

Validation Metric:

How mature is the creation and implementation of the DQ rules to define valid null cases

These are examples of how the characteristic might occur in a database.

Example: Source:
Let us consider a Person relation with the attributes Name, Surname,

BirthDate,and Email. The relation is shown in Figure 2.2. For the tuples with Id equalto2,3,and 4, the Email value is NULL. Let us suppose that the person represented by tuple 2 has no e-mail: no incompleteness case occurs. If the person represented by tuple 3 has an e-mail, but its value is not known then tuple 3 presents an incompleteness. Finally, if it is not known whether the person represented by tuple 4 has an e-mail or not, incompleteness may not be the case.

ID 1

2 3 4

Name John

Edward Anthony Marianne

Surname Smith

Monroe White Collins

BirthDate 03/17/1974 02/03/1967 01/01/1936 11/20/1955

Email

smith@abc.it NULL NULL NULL

not existing existing but unknown not known if existing

Fig. 2.2. The Person relation, with different null value meanings for the e-mail attribute

C. Batini and M, Scannapieco, “Data Quality: Concepts, Methodologies, and Techniques”, Springer, 2006.
1) A database contains information on repairs done to capital equipment. How- ever, it is a known fact that sometimes the repairs are done and the informa- tion about the repair is just not entered into the database. This is the result of lack of concern on the part of the repair people and a lack of enforcement on the part of their supervisors. It is estimated that the amount of missing information is about 5%. This database is probably a good-quality database for assessing the genral health of capital equipment. Equipment that required a great deal of expense to maintain can be identified from the data. Unless the missing data is disproportionately skewed, the records are usable for all ordinary decisions. However, trying to use it as a base for evaluating information makes it a low-quality database. The missing transactions could easily tag an important piece of equipment as satisfying a warranty when in fact it does not.

2) A blank for COLLEGE_LAST_ATTENDED may be accurate or inaccurate. If the person it applied to had attended college, it would be inaccurate. This is another case of valid but not accurate.

J. E. Olson, “Data Quality: The Accuracy Dimension”, Morgan Kaufmann Publishers, 9 January 2003.

The Definitions are examples of the characteristic that appear in the sources provided.

Definition: Source:
1) A null value is a missing value. However, a value that is missing may provide more information than one might think because there may be different reason that it is missing. A null value might actually represent an unavailable value, an attribute that is not applicable for this entity, or no value in the attribute’s domain that correctly classifies this entity. Of course, the value may actually be missing.

2) When the null value (or absence of a value) is required for an attribute, there should be a recognizable form for presenting that null value that does not conflict with any valid values.

LOSHIN, D. 2001. Enterprise knowledge management: The data quality approach, Morgan Kaufmann Pub.
1) Ability to distinguish neatly (without ambiguities) null and default values from applicable values of the domain.

2) Completeness refers to the degree to which values are present in a data collection, as for as an individual datum is concerned, only two situations are possible: Either a value is assigned to the attribute in question or not. In the latter case, null, a special element of an attribute’s domain can be assigned as the attribute’s value. Depending on whether the attribute is mandatory, optional, or inapplicable, null can mean different things.

REDMAN, T. C. 1997. Data quality for the information age, Artech House, Inc.